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Using the six parameter representation of the range-rate observable, arguments
are presented to show why differenced data may more effectively diminish the
effects of unmodelable spacecraft accelerations than the conventional tracking
data. For a Viking spacecraft experiencing unknown constant accelerations, the
orbit determination solution using differenced data may be two orders of magni-
tude better than the solution obtained from conventional tracking data.

l. Introduction

In the previous article,! some preliminary analysis was
performed to examine the advantages of using data taken
simultaneously, or nearly simultaneously, from two widely
separated tracking stations. In particular, it was shown
that the deleterious effect of unmodeled accelerations on
the estimate of the spacecraft state may be substantially
reduced by differencing the data obtained in this manner.
To further illustrate the reasons why differenced data
may be superior to conventional data, and, in addition,
to obtain some idea of the degree of this superiority,
conventional and differenced data were separately used
to compute estimates of the position and velocity of a
Viking spacecraft subject to unmodeled constant -accel-
erations. Since the primary purpose of undertaking this
investigation is to gain an increased understanding of

1Rourke, K. H., and Ondrasik, V. J., “Application of Differenced
Tracking Data Types to the Zero Declination and Process Noise
Problem” (this volume).
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the orbit determination process, the range rate observable
will be represented by an analytical model involving six
parameters.

Ii. The Six Parameter Model

As explained in Ref. 1, this six parameter model is
developed by first expanding the range-rate observable,
in terms of the ratio between the geocentric distances of
the observing station and spacecraft, to obtain the follow-
ing equation:

ﬁ=;—:séc058+1‘s(q.5~¢.x)0058(¢—a)
+ 1,8 sin 8 cos (¢ — a) (1)
where

r = spacecraft geocentric range

§ = spacecraft declination
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« = spacecraft right ascension

7, = station’s distance off the Earth’s spin axis

zs = station’s distance above the Earth’s equator
¢ = station’s right ascension
. da
a=—
dt

The six parameter model results from assuming that the
time-varying quantities involved in Eq. (1) may be repre-
sented by the following first-order expansions in time:

r=1,+ 7ot
8 =8, + 8t
a = a, + at
§ =8, + 8.t
@ = ay + @t
¢=¢0+ét (2)

where a, denotes that the quantity a is evaluated at ¢ = 0.
Substituting Eq. (2) into Eq. (1) yields

p(t) = a + bsin(¢o — ao + ét) + ccos (¢po — ay + ét)
+ dt + et sin (¢o — a0 + 6%)
+ ft cos (o — a0 + 6t) 3)

where

a=r,—z 50 €os 8,

b= rs(a.—éo)cosiso

C=r1, 50 sin &,

d=T7,+ z, (8.3 sin 8, — 8, cos 8o)

e=r,[—(6— 20 8, 5in 8, — & sin 8]

f=1,[— (6 — a) a0 c0s 8, + 53cos 8, + B, sin 8,

6 = 0.729 X 10-*rad/s (4)
Since 7, 8,, and &, are not independent of r,, 8,, ao, *o, 8o,
and a,, the expressions in Eq. (4) for the coefficients a—f
are not suitable for analysis. However, as shown in Ref. 1,

the relationships between these quantities may be found,
and result in the following equations:

62

a = o — 2, (5, cos 8)
b=r, ({;0 — @) cos &,
C=1, éo sin §,

d= .r.,,o + 7, (5% + a2 cos? 30)

+ z, (53 sin 8, + &% cos? §, sin &,

[

+2 —:—0— cos 8§, — :S.go cos 80)

e o ; . oo
e= 1'8(— ()ososin80+2r—°aocosso —ago>
0

f= 1‘3(— 0o &0 COS 8y + ok cos® 8, + 82 cos 8,

_ 2§°—§0 sin 8, + 3,0 sin so)
0

. r 1 1
LA r_g'_re Ry
r e

X < c0s 8 cos §, cos (@ — a,) + sin § sin §, >]

X < sin 8 cos §; cos (e — a,;) — cos 8sin 8, >

. e (1 1 ,
a; = —/.LT(—T—Z'—'E)COSSSln(a—aS)

rp = {r* + 13 — 2rr, [cos & cos 8§, cos (« — a;)

+ sin 8 sin §,] }*
r. = distance from Earth to Sun

= declination of the Sun

o2
@

a; = right ascension of the Sun

u = gravitational constant of the Sun

()

Any error analysis based upon this model proceeds by
treating the coefficients a—f as data points which describe
the range-rate observable. However, these “data” points
are not independent, and in fact may be highly correlated.
The correlations and appropriate weights associated with
these coefficients may be expressed by the following
information matrix:
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where
= 6t

op = variance of the white noise associated with the
range-rate measurements

N = number of range-rate data points

indicates that the integral extends over the full
/p tracking interval, but has a non-zero contribution
only when data is being taken
In using the six coefficients a—f as data points, the esti-
mation filter accepts residuals in a—f, which have been
generated in some manner, and modifies the six elements
of the spacecraft state such that the residuals in p(t) are
minimized. If the residuals in a—f are generated by an
error source (e.g., unmodeled non-gravitational accelera-
tions), there will be a resulting error in the spacecraft
state. Using the classical least-squares technique, this
solution procedure may be written as

Axp = ApAT ], Aa (7)

where

Ax; = solution vector for the spacecraft
state resulting from the use of range-
rate data only

Aa = a vector representing changes in the
coefficients a—f which have been
generated in some manner

Ap = (AT ], A)* = state covariance resulting from the
use of range-rate data only

a(a’b’cﬁd,e’f)

0 (To, 80, ay, io, so, &o)

A= (8)
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/¢2 dy /¢2 sin y dy /4/2 cos ¢ dy
P [ P

f Y?sin? y dy / y* sin ¢ cos y dy
P P

/z,[ﬂ cos? ¢ dy
p

The effect of including range data in the solution may
be represented by supplying a priori information to the
information matrix as shown below:

Ax, = A AT [, Aa 9
where

Ax, = solution vector for the spacecraft state result-
ing from the use of range rate and range data

A= [AT], A+, (ap)]

oap) = | @10
A Lo

o, (ap) = a priori standard deviation of the geocentric
range

(10)

ll. Specification of Tracking Patterns and
Trajectory Information

The possible advantages inherent in the differenced
range-rate data will be illustrated by comparing (1) the
covariances, and (2) the solution error produced by con-
stant unknown accelerations, when these quantities are
computed separately, using the differenced data and the
conventional range-rate data. The particular example
that will be chosen involves the Viking trajectory de-
scribed in Table 1 and the use of tracking patterns shown
in Fig. 1. These tracking passes are essentially horizon to
horizon and since the epoch has been chosen to occur at
the meridian crossing of DSS 14, only the DSS 14 tracking
pattern will be symmetric.

63



The standard deviation of the coefficients a—f, for data
arcs containing pass 1, passes 1-3, passes 1-5, and passes
1-7 of Fig. 1 are easily calculated from Eq. (7) and are
shown in Fig. 2. In this figure the standard deviations
resulting from the symmetric passes of DSS 14 are labeled
with (SYM) and those resulting from the non-symmetric
passes which will be used for the differenced data are
labeled by (NON-SYM). It should be noted that when
more than one pass of data is used the standard deviations
resulting from the symmetric passes (which will be used
with the conventional data) are approximately an order of
magnitude lower than those resulting from the use of
non-symmetric passes (which will be used with the differ-
enced data).

IV. Spacecraft State Standard Deviations and
Errors Resulting From the Use of
Conventional Data

If the components of the unknown, constant, non-
gravitational acceleration are expressed in the ro, 8, ao
coordinate system, it is easily seen from Eq. (4) that these
accelerations produce errors in the coefficients describing
the conventional range rate of an amount given below:

Aa=0
Ab =0
Ac=0

o zs o0
Ad = Ak, — - cos 8, Aks
f's e
Ae = — —- cos 8, Ake
rs . (1]
Af = - sind, Aks (11)

where

(1]
Ak, 5,« = components of the unknown, constant, non-
gravitational accelerations

The errors in the coefficients, a~f, produced by a con-
stant non-gravitational acceleration of amount 10-*? km /s*
in all three components are shown in Table 2.

The errors in the estimate of the spacecraft state and
the associated computed standard deviations may now be
obtained by using Egs. (7) and (8) for conventional range-
rate data only and by using Eqgs. (9) and (10) for the
conventional range-rate data supplemented by a range
point. The results are shown in Figs. 3 and 4, where the
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quantities resulting from the use of conventional range-
rate data only and conventional range-rate data plus a
range point are labeled by (p) and (g, 1), respectively. To
avoid numerical difficulties the solutions involving range
data were performed by starting with the a priori infor-
mation listed in Table 3.

One of the most notable features of Fig. 3 is that the
errors generated by the range-rate data only solutions
are constant, while the errors generated by the range-rate
data supplemented by a range point depend upon the
data arc. The doppler only solutions are constant because
the six data points and six solve-for parameters are related
in such a manner that allows the residuals to be reduced
to zero. However, when the range is deleted from the
solution, there are only five solve-for parameters and the
residuals cannot be set to zero, only minimized. This
minimization is dependent upon the correlations, which
are a function of time, and hence the solution will be a
function of time. A further examination of Fig. 3 shows
that an unknown acceleration will produce errors pri-
marily in the range estimate, if range-rate data only is
used and in the estimates of the declination and right
ascension rates if a range measurement is also used. These
results may be easily explained. From Eq. (10) it is appar-
ent that unknown accelerations in the radial direction are
about four orders of magnitude more important than
accelerations perpendicular to the radial direction. The
solution filter will account for this spurious radial accel-
eration by adjusting the gravitational, and centrifugal
accelerations. Since the range enters most strongly into
the range-rate observable through the gravitational accel-
eration, if it is available for estimation, almost all of the
error will emerge in this quantity. A very good approxi-
mation to a range error produced by a constant accel-
eration may often be obtained by using the following
equation:

ak

ar= od/or

(12)

where

A% = constant acceleration error
od/or =~ m/r3 (2 — 3sin?y) + (a® cos?  + 52) (Ref. 1)
¢ = Earth-spacecraft-Sun angle

For the example under consideration, Eq. (12) gives an
approximation to the range error of 50.8 km, which is very
close to the result shown in Fig. 3. If the range has been
essentially deleted from the solution by the a priori infor-
mation, the radial acceleration will be absorbed in the
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centrifugal acceleration term, because any change in the
gravitational acceleration would now require changes
in 8 and a which are well determined by the b and ¢ coef-
ficients. An error in the centrifugal accelerations will mani-
fest itself as errors in & and §. Simple equations for A%
and A8 comparable to the Ar equation above cannot be
written down because § and « are also strongly involved
in the ¢ and f coefficients. Although the errors in the § and
a directions are less than a kilometer, they are included
because the results scale directly with the magnitude
of the accelerations and for those typical of solar electric
spacecraft the errors could be three orders of magnitude
larger than those shown in Fig. 3.

V. The Six Parameter Model for Differenced Data

The six parameter model representing the differenced
range-rate data may be obtained by first using Eq. (3)
to express separately the topocentric range rate from two
stations as shown below:

21 (t) = a, + bysin (§t) + ¢, cos (8t) + dy t

+ e tsin (0.t) + f, tcos (G.t)

52 (£) = @y + bysin (gy + 68) + ¢ c0s (Aas + 1)
+d,t+ e, tsin(r, + 0.t) + fotcos (A + ét)

where

Aoy = Ay — Ay
t = 0 occurs at meridian crossing of station 1
Clearly the differenced range rate, V¢, may be repre-

sented by the difference between these two equations as
shown below:

V$ = aq + basin (ft) + cqcos (0.t) + dg
+ egt sin (ét) + f4t cos (G.t) (13)

where

a;= — (s, — 2s,) § cos 8
by = b, — (b:cos Ay — Co8in Ay)
€i= ¢, — (€508 Ay; + D, sin A,y)

dy = (25 — 24) (53 sin 8, — 8, cos 8,)

= (25 — Zs2) (égsin 8o + &3 cos 8, sin 8,

1.', . .o
+ 2 -2 8, cos 8, — 8,0 cOs so)

i
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€1 = e, — (8,08 Ay; — f, Sin Ayy)
fa= f1 — (f2c08 sy + €5 8in Asy) (14)

The a; and d; terms have been written explicitly to show
that the geocentric range rate and accelerations have
cancelled out and no longer appear in the coefficients.
The covariance and solutions using differenced range-rate
data only and differenced range-rate data supplemented
by a range point may be obtained by using Egs. (7)-(10)
with the a—f coefficients replaced by the a;~f; coefficients
of Eq. (14). As was pointed out in the previous article
(Footnote 1), the differencing procedure introduces prob-
lems associated with the frequency standard. However,
for the sake of clarity, these oscillator-induced problems
will be ignored.

VI. Spacecraft State Variances and Errors Resulting
From the Use of Differenced Data

The unknown constant non-gravitational accelerations
of 102 km/s? considered previously will produce errors
in the a;-f, coefficients of the amount shown in Table 2.
It is readily apparent from this table that the error in dj is
now of the same size as the errors in the ¢4 and f;
coeflicients.

The formal covariance, and errors in spacecraft state
due to unknown constant accelerations, may now be com-
puted for the data arcs shown in Fig. 1, and are illustrated
in Figs. 3 and 4. In these figures, the quantities which
result from the use of differenced range-rate data only are
labeled by (DIFF §) and those which result from the use
of differenced range-rate supplemented by a range point
are labeled by (DIFF 4, r,). An examination of Fig. 3
shows that, as was the case for conventional data, the
acceleration errors are absorbed by either the range or
3 and a.

VIl. Comparison Between the Conventional and
Differenced Data Results

To obtain a clear comparison between the spacecraft
states standard deviations and errors generated by the
two data types under consideration, each quantity in
Fig. 3 or 4 computed from differenced data was divided
by the same quantity computed from conventional data.
The results of following this procedure for the standard
deviations and errors computed from five passes are
shown in Table 4.

Bearing in mind the assumptions upon which this
analysis has been based, an examination of Table 4 and
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Figs. 3 and 4 leads to the following tentative conclusions
regarding the use of conventional and differenced range-
rate data to obtain a spacecraft state solution in the
presence of unknown constant accelerations:

(1) The differenced data cannot determine the range
or range rate.

(2) The formal standard deviations for 8, a, 8, and &
are generally slightly better using the conventional
data if more than one pass of data is used.

(3) For solutions involving range-rate data only, un-
known constant accelerations produce errors in the
spacecraft state which are generally about the same
size, irrespective of whether conventional or dif-
ferenced data is used.

(4) If a range point is included in the data set, errors
in 8, o, 8, and & produced by unknown constant
accelerations of equal magnitude in three orthog-
onal directions, are at least 100 times smaller if
differenced range-rate data is used rather than the
conventional range-rate data.

The fact that the differenced data cannot estimate the
geocentric range or range rate is not surprising because
the portions of the range-rate observable which is most
effective in determining these quantities have been in-
tentionally eliminated in the differencing process. This
is not a serious matter because the range and range rate
can be determined from the conventional data.

The main advantage of differenced range-rate data
over conventional range-rate data is that state estimates
obtained from the differenced data are not degraded
nearly as much by unmodeled radial accelerations as
estimates obtained from conventional range-rate data as
was mentioned above. It is this feature that raises the

promise that using differenced doppler data may be at
least a partial solution to the process noise problem.

Before leaving this section it should be mentioned once
more that the analysis performed here is representative
of a real physical situation only to the degree that the
six parameter model is representative of the range-rate
observable and that the unknown accelerations are
constant.

VIIl. Summary and Discussion

The purpose of the analysis carried out in the previous
sections was motivated by the desire to increase our under-
standing of how the differencing techniques ameliorates
the effect of unmodelable accelerations, and also to obtain
some idea of how effective these techniques may be. By
making use of the six parameter representation of the
range-rate observable, it was shown, once again, that the
unmodeled accelerations which severely degrade the solu-
tion are those occurring in the radial direction. It appears
that the effect of these accelerations can be substantially
reduced by differencing the data taken simultaneously
from two tracking stations. For the Viking trajectory,
which was used as an example, the unmodeled constant
accelerations degraded the conventional data solution
two orders of magnitude more than the differenced data
solution,

Although the analysis presented in this article indicates
that differenced data may be very useful in diminishing
the effects of unmodelable accelerations, before any real
confidence may be acquired in this technique it will be
necessary to perform an uncompromised accuracy analy-
sis study. Such a study is currently underway and will be
reported on in the near future.
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Table 1. Viking trajectory information Table 3. A priori information for the spacecraft state

Quantity Value Spacecraft coordinate A priori value
fo 0.8854 X 10° km r 107 km
8o 20.31 deg 8 10 rad
a0 57.76 deg @ 107 rad
7o 15.32 km/s r 1072 km/s
8 0.2278 X 10" rad/s 8 10 rad/s
& 0.8896 X 107" rad/s a 107 rad/s
fo 1976 Jan 22 3 33™
meridian crossing at DSS 14

Table 4. Comparisons of standard deviations and errors
obtained by using conventional and differenced range-

Table 2. Errors in a—f produced by a constant rate data
acceleration
o (diff) /o (conv) A (diff)/ A (conv)*

Conventional Error® Differenced Error® Coordinate Range rate | Range rate Range rate Range rate
coefficients coefficients only + range only + range

a 0 as 0 r 234 X 10° | 1 —0.942 -

b 0 ba 0 ) 4.08 1.65 —3.79 0.0109

c 0 e 0 a 2.62 0.516 0.00196 0.00244

d 9.9996 X 10-1 ds — 77869 X 10~" r 212 X 10" | 6.07 X 10° 476 X 10° [ 9.23 X 10

e —5.5120 X 107" eq —3.8737 X 1077 é 278 X 10 | 0.0713 0.0000345 | 0.00626

f 2.0400 X 10°" fa —3.3122 X 107" & 2.35 1.29 376 0.00400
*Produced by A.k.r, 5,0 = 1072 km/s? *For unmodeled constant acceleration of 107 km/s’.
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when conventional and differenced data are used
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